PhD defence Higher commutativity in algebra and algebraic topology

Oisín Flynn-Connolly

Under the direction of Grégory GINOT Laboratoire Analyse, Géométrie et Applications, Institut Galilée Université Sorbonne Paris Nord

October 4, 2024

Oisín Flynn-Connolly (Under the direction of PhD defence Higher commutativity in algebra

Introduction to higher structures

æ

What is algebraic topology?

• Originates in the work of Poincaré.

Figure: Henri Poincaré (1854-1912)

- The aim is to understand the **shape** and **form** of topological spaces using algebraic invariants with the goal of distinguishing them up to **homeomorphism** or **homotopy equivalence**.
- The first algebraic invariant is number of holes (homotopy or (co)homology groups), but this both a) too difficult and b) insufficient. We need more structure.

What is higher commutativity?

- The integers are equipped with a commutative multiplication $2 \times 3 = 3 \times 2$.
- Similarly spaces can also be equipped with various
 (co)multiplications. For example, one always has the diagonal map.

$$X \to X imes X$$

$$x\mapsto (x,x)$$

Based loop spaces $Map_*(S^1, X) = \Omega(X)$ are also be equipped with **loop concatenation**:

$$\Omega(X) \times \Omega(X) \rightarrow \Omega(X)$$

This is **homotopy associative**, i.e. $\pi_1(X)$ is a group. If you take $\Omega^2(X)$ it becomes **homotopy commutative** - i.e. $\pi_i(X)$ is a commutative group for i > 0.

October 4, 2024

Definition

A **dg-algebra** is a chain complex A equipped with a binary associative multiplication $- \cup - : A^p \otimes A^q \to A^{p+q}$ and d is a derivation wrt. \cup

$$d(x \cup y) = d(x) \cup y + (-1)^{|x|} x \cup d(y)$$

Example: if you have a smooth manifold M, the de Rham forms $(\Omega^{\bullet}(M, \mathbb{R}), \wedge)$ form a **commutative dg-algebra**.

Definition

Two dg-algebras A, B are **weakly (homotopy) equivalent** if they can be linked via a zig-zag of algebras where all the maps are cohomology equivalences.

$$A \xrightarrow{\sim} X \xleftarrow{\sim} \dots \xrightarrow{\sim} Y \xleftarrow{\sim} B$$

Example: if you have a smooth manifold M, the de Rham forms $(\Omega^{\bullet}(M, \mathbb{R}), \wedge)$ are weakly equivalent to $(C^{*}(X, \mathbb{R}), \cup)$. This is one of the two central ideas of **Sullivan's approach to rational homotopy theory.** This does not hold when the coefficient ring is not a field of characteristic 0.

Operads

Definition

An **operad** \mathcal{P} in a monoidal category C is a collection of objects $\mathcal{P}(n) \in C$. Each object $\mathcal{P}(n)$ is equipped with an action of the symmetric group \mathbb{S}_n and there is a composition law

$$\mathcal{P}(n) \circ_i \mathcal{P}(m) \to \mathcal{P}(n+m-1)$$

Example

The endomorphism operad

$$\operatorname{End}(X)(n) = \operatorname{Map}(X^{\times n}, X)$$

The composition law is given by

$$\operatorname{\mathsf{End}}(X)(n)\circ_i\operatorname{\mathsf{End}}(X)(m) o\operatorname{\mathsf{End}}(X)(n+m-1)$$

$$(f,g)\mapsto (\mathsf{id}\times\mathsf{id}\times\cdots\times g\times\mathsf{id}\times\cdots\times\mathsf{id})\circ f$$

Oisín Flynn-Connolly (Under the direction of PhD defence Higher commutativity in algebra

Definition

An algebra over an operad \mathcal{P} is an object $X \in C$ and a map of operads

 $\mathcal{P} \to \mathsf{End}(X)$

Examples

- There an operad for associative algebras $Ass(n) = R[S_n]$.
- There an operad for commutative algebras Com(n) = R.
- There is an infinite family of operads, each equipped with a free action of the symmetric group interpolating between the two

$$\mathsf{Ass} \xleftarrow{\sim} E_1 \subset E_2 \subset \cdots \subset E_\infty \xrightarrow{\sim} \mathsf{Com}$$

The singular cochain complex $C^{\bullet}(X, R)$ can, via explicit formulae given by Berger and Fresse, be equipped with the structure of an E_{∞} -algebra.

Theorem (Mandell, 2003)

Two finite type, nilpotent spaces X and Y are weakly equivalent and only if their E_{∞} -algebras of singular cochains with integral coefficients are quasi-isomorphic as E_{∞} -algebras.

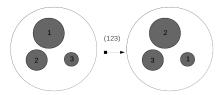
Recognition and corecognition

Oisín Flynn-Connolly (Under the direction of PhD defence Higher commutativity in algebra October 4, 2024 10,

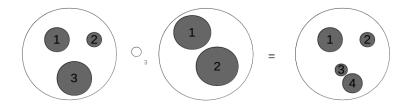
æ

Arity k-component of the little n-disc operad \mathbb{D}_n

- Start with the standard *n*-disc.
- Consider the space of all pairwise disjoint embedding of k smaller *n*-discs into it
- These discs are labelled $\{1, \ldots, k\}$
- Symmetric group acts by permuting the labels.



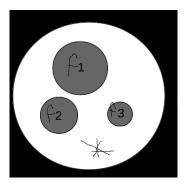
The little *n*-disc operad: operadic composition



Action on loop spaces

- An *n*-fold loop space is a space of the form $Map_*(S^n, X)$.
- You have an action

$$\mathcal{D}({\it n}) imes {\sf Map}_*({\it S}^n,X)^{ imes n} o {\sf Map}_*({\it S}^n,X)^{ imes n}$$



• This generalises loop concatenation.

Theorem (May [2], 1972)

Every n-fold loop space is a D_n -algebra, and if a pointed grouplike space is a D_n -algebra then it has the weak homotopy type of an loop space.

- Opened the door to the computation of $H_*(\Omega^n X)$
- Significant to the development of stable homotopy theory.

• The smash product of two pointed spaces $X \wedge Y$ is

 $(X \times Y)/(* \times Y \cup X \times *)$

• An *n*-fold reduced suspension $\Sigma^n X = S^n \wedge X$.

Theorem (FC, Moreno-Fernández, Wierstra)

Every n-fold reduced suspension is a \mathcal{D}_n -coalgebra, and if a pointed space is a \mathcal{D}_n -coalgebra then it is homotopy equivalent to an n-fold reduced suspension.

- This is the Eckmann-Hilton dual to May's theorem.
- The key step in the proof is to precisely describe the comonad associated to an operad in pointed topological spaces.
- There is a corecognition principle already for coalgebras over the comonad ΣⁿΩⁿ. These are all suspensions on the nose.

Coalgebras over an operad

Example

The coendomorphism operad

$$\mathsf{CoEnd}(X)(n) = \mathsf{Map}(X, X^{ee n})$$

The composition law is given by

$$\operatorname{CoEnd}(X)(k) \times \operatorname{CoEnd}(X)(n_1) \times \cdots \times \operatorname{CoEnd}(X)(n_k)$$

 $\xrightarrow{\circ} \operatorname{CoEnd}(X)(n_1 + \cdots + n_k)$

$$(f; f_1, \ldots, f_k) \mapsto f \circ (f_1 \vee f_2 \vee \cdots \vee f_k)$$

Definition

An **coalgebra over an operad** \mathcal{P} is an object $X \in C$ and a map of operads

$$\mathcal{P} \to \mathsf{CoEnd}(X)$$

Example

The pinch map equips the *n*-sphere S^n with the structure of a coalgebra over the little *n*-discs operad. More generally *n*-fold suspensions $\Sigma^n X = S^n \wedge X$ are too.

- The category of *P*-coalgebras in spaces turns out to be the co-Eilenberg-Moore category of a certain comonad C_{*P*}.
- This comonad is much smaller than you might expect.

Example (Failure of Eckmann-Hilton duality)

An explicit description of this comonad shows that there are no non-trivial strictly commutative or strictly coassociative algebras in spaces. So equivalent operads **do not** give rise to equivalent categories of coalgebras.

Higher cohomology operations

Oisín Flynn-Connolly (Under the direction of PhD defence Higher commutativity in algebra October 4, 2024 18/3

æ

Given an algebraic model category M where all objects are fibrant, one constructs the **matric Massey products** for an object $x \in M$ as follows.

- One takes a functorial cofibrant replacement m(x) for x.
- Suppose m(x) admits a functorial filtration (generally by some notion of weight).
- Suppose that that E₁-page of the associated spectral sequence depends only on H(x)
- Then there are chain-level descriptions of the higher differentials, via the staircase lemma, that are homotopy invariant.

Definition

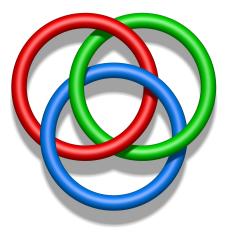
Let A be a dg-algebra. Let $a, b, c \in H^{\bullet}(A)$ by such that ab = 0 and bc = 0. Let x, y, z be cocycles representing a, b, c and suppose du = xy and dv = yz. Then uz - xv is a cocycle and represents a well-defined class of $H^{|a|+|b|+|c|-1}(A)$

$$(A)$$

 $aH^{|b|+|c|-1}(A) + H^{|a|+|b|-1}(A)c$

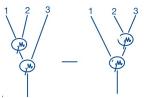
Muro recently generalised Massey triple products to \mathcal{P} -algebras over a quadratic operad [3].

The geometric picture



Source: Jim.belk; Wikipedia

- The associative operad is generated by a single arity two operation $\mu = -\cdot \in \mathcal{P}(2)$
- The free operad $\mathcal{F}(R)$ is made up of sums of trees.
- To get the associative operad we quotient $\mathcal{F}(\mu)$ by an operadic ideal generated by the following element.



• The associative operad is $\mathcal{F}(R)/(E)$, it is quadratic.

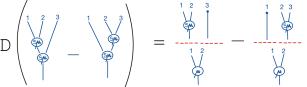
• For *quadratic operads*, one has a Koszul dual cooperad \mathcal{P}^{i}

$$(\mathcal{F}(R)/(E))^{i} = \mathcal{C}(sR, s^{2}E) \hookrightarrow \mathcal{F}^{c}(sR)$$

- This also admits a description in terms of trees.
- In nice situations, when \mathcal{P} is **Koszul**, one has that $B\mathcal{P}^i \xrightarrow{\sim} \mathcal{P}$ is a minimal model.
- This relationship, Koszul duality, is both reciprocal and ubiquitous in nature. Ass ~ Ass, Pois ~ Pois, Lie ~ Com, Leibniz ~ Zinbiel. There are examples of non-Koszul operads like PreLie ~ Perm.

Generalising Massey products

- For Koszul *P*, the primitive *P*-Massey products correspond precisely to co-operations, represented as trees, in the Koszul dual cooperad *P*ⁱ. The order of the operation corresponds to the weight of the tree.
- You have an inductive map on the weight of the tree given by pruning all the branches at the root of trees.



• The weight zero operation correspond to the initial inputs.

Theorem (FC-Moreno-Fernandez, 2023)	
Weakly equivalent $\mathcal P$ -algebras have the same Massey products.	
- (日) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	∃

Specializing to various cases, we recover:

- Weight 1 trees: regular operations on the \mathcal{P} -algebra.
- Associative operad: classical Massey products
- Lie operad: The Lie-Massey brackets of Retah and Alladay
- Weight 2 trees: Muro's generalisations of Massey triple products.
- Dual numbers operad \mathcal{D} : Algebras over \mathcal{D} are bicomplexes. The Massey products are precisely the differentials in the associated spectral sequence.
- Poisson operad: Messy formulae.

Other properties of Massey products

 Given a morphism of operads *f* : *P* → *Q*, one has induced functors on the Eilenberg-Moore categories.

$$f_{!}: \mathcal{P} - \mathsf{Alg} \leftrightarrows \mathcal{Q} - \mathsf{Alg}: f^{*}.$$

With some technical assumptions, Massey products can be pushed and pulled between these categories via these functors.

- Given an *P*-algebra *A* and a choice of homotopy retract onto its homology, by the **homotopy transfer theorem** there is a quasi-isomorphic *P*_∞-structure on *H*(*A*).
 - For any *P*-Massey product in x ∈< x₁, ··· x_n >, one can always find a P_∞-structure on H and higher multiplication m satisfying m(x₁, ··· , x_n) = x.
 - ② But for a random P_∞-structure on H, the higher multiplication m(x₁, · · · , x_n) will not generally be a Massey product the lower multiplications must be trivial in a very specific way.

Question

What are the \mathcal{P} -Massey products over \mathbb{F}_p ?

- The \mathcal{P} -Massey products still work.
- Over \mathbb{F}_p , the bar-cobar resolution no longer completely works.
- So one uses the cotriple cofibrant replacement and filter using the skeletal filtration.
- We call the resulting operations cotriple products.
- For the commutative operad, the secondary cotriple operations turn out to be easy to calculate.

Cotriple products can be used to produce examples of:

- Commutative algebras A, B over Z without torsion in their cohomology such that A ⊗ Q and B ⊗ Q are weakly equivalent, but A ⊗ F_p and B ⊗ F_p are not.
- Commutative algebras which have a divided power structure on cohomology but which are not weakly equivalent to a divided power algebra.
- Commutative algebras A, B over 𝔽_p, which are weakly equivalent as associative algebras but not commutative algebras. This answers a question raised in a recent paper¹.
- Commutative algebras A, B over \mathbb{F}_p that are weakly equivalent as E_{∞} -algebras but not commutative algebras.

¹R. Campos et al. *Lie, associative and commutative quasi-isomorphism*. To appear in Acta Mathematica. arXiv: 1904.03585 [math.RA].

Question

When is an E_{∞} -algebra is weakly equivalent to a commutative algebra?

There are obstructions: A subset of the cotriple operations, called **higher Steenrod operations**. These include all of the Steenrod operations except $Sq^n(x)$ when |x| = n + higher obstructions.

Theorem (F.C.)

An E_{∞} -algebra is rectifiable if and only if its higher Steenrod operations vanish coherently.

Other work

Oisín Flynn-Connolly (Under the direction of PhD defence Higher commutativity in algebra October 4, 2024 30 /

3

→ < ∃ →</p>

• • • • • • • •

p-adic de Rham forms

- In 1972, Sullivan [5] defined the **the algebra of piecewise linear differential forms**: essentially a generalization of the de Rham forms functor to arbitrary simplicial sets. This is a strictly commutative algebra.
- The limitation of this approach is that it only works in zero characteristic.
- Using divided power algebras, one can construct a similar functor $\Omega^*(X, \widehat{\mathbb{Z}_p})$ that approximates *some* of the information about the homotopy type of E_{∞} -algebra $C^*(X, \widehat{\mathbb{Z}_p})$.
- The information in question is all of the cohomology, most of the Massey products and coherence data.
- The *p*-adic de Rham forms are weakly equivalent to $\eta\left(C^*\left(X,\widehat{\mathbb{Z}_p}\right)\right)$ where η is a *décalage* functor occurring in crystalline cohomology.

Theorem (Hochschild-Kostant-Rosenberg Theorem)

Let \Bbbk be a field of characteristic 0 and let A be a commutative \Bbbk -algebra which is essentially of finite type and smooth over \Bbbk . Then there is an isomorphism of graded \Bbbk -algebras

$$\Phi:HH_{*}\left(A,A
ight)\overset{\sim}{\rightarrow}\Omega^{*}\left(A,\Bbbk
ight)$$

between the Hochschild homology and the module of Kähler differentials.

The higher Hochschild-Kostant-Rosenberg theorem

The Hochschild chain complex $C_*(A, A)$ is intuitively 'circle'-shaped. Pirashvili [4] has generalised this to more general complex $A \boxtimes X$ for any simplicial set X.

Theorem

Let X be a formal simplicial set of finite type in each degree. Let A be a CDGA. Suppose that (Sym(V), d) is a cofibrant, quasi-free resolution of A. Then there is a natural equivalence of chain complexes

$$A oxtimes X \xrightarrow{\sim} \mathsf{Sym}\left(V \otimes H_{*}\left(X
ight), d_{X}
ight)$$

This equivalence is functorial with respect to formal maps.

• When $X = \Sigma^n X$, one can explicitly construct a homotopy Pois_n-structure on the left hand side. This is equivalent to the Deligne conjecture by abstract nonsense.

October 4, 2024

Oisín Flynn-Connolly (Under the direction of PhD defence Higher commutativity in algebra October 4, 2024 34

イロト イヨト イヨト イヨト

3

- Find a precise statement for Eckmann-Hilton duality over Z akin to Koszul duality in characteristic 0.
- Are divided power algebras A and B quasi-isomorphic as divided power algebras if and only if they are quasi-isomorphic as associative algebras?
- Study Massey products in other situations:
 - Relate them directly to the more general phenomenon of (non-operadic) Koszul duality
 - Use them to study algebras over modular operads or even modular operads or graph complexes themselves, where one would need to generalise from rooted trees to more general graphs.

35 / 37

- R. Campos et al. Lie, associative and commutative quasi-isomorphism. To appear in Acta Mathematica. arXiv: 1904.03585 [math.RA].
- [2] J. P. May. The geometry of iterated loop spaces. Lectures Notes in Mathematics, Vol. 271. Springer-Verlag, Berlin-New York, 1972, pp. viii+175.
- [3] F. Muro. "Massey products for algebras over operads". In: (). To appear in *Communications in Algebra*, 2023.

 T. Pirashvili. "Hodge decomposition for higher order Hochschild homology". In: Ann. Sci. École Norm. Sup. (4) 33.2 (2000), pp. 151–179. ISSN: 0012-9593. DOI: 10.1016/S0012-9593(00)00107-5. URL: https://doi.org/10.1016/S0012-9593(00)00107-5.

[5] D. Sullivan. "Infinitesimal computations in topology". In: Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). ISSN: 0073-8301.